Existence and Regularity of Higher Critical Points in Elliptic Free Boundary Problems
نویسندگان
چکیده
Existence and regularity of minimizers in elliptic free boundary problems have been extensively studied in the literature. We initiate the corresponding study of higher critical points by considering a superlinear free boundary problem related to plasma confinement. The associated energy functional is nondifferentiable, and therefore standard variational methods cannot be used directly to prove the existence of critical points. Here we obtain a nontrivial generalized solution u of mountain pass type as the limit of mountain pass points of a suitable sequence of C-functionals approximating the energy. We show that u minimizes the energy on the associated Nehari manifold and use this fact to prove that it is nondegenerate. We use the nondegeneracy of u to show that it satisfies the free boundary condition in the viscosity sense. Moreover, near any free boundary point that has a measure-theoretic normal, the free boundary is a smooth surface, and hence the free boundary condition holds in the classical sense.
منابع مشابه
Existence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملFree and constrained equilibrium states in a variational problem on a surface
We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کامل